Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Journal of Southern Medical University ; (12): 667-679, 2023.
Article in Chinese | WPRIM | ID: wpr-982408

ABSTRACT

OBJECTIVE@#Immunotherapy has brought significant clinical benefits to a subset of patients, but has thus far been disappointing in the treatment of immunologically "cold" tumors. Existing biomarkers that can precisely identify these populations are insufficient. In this context, a potential cold tumor microenvironment (TME) marker FARSB was investigated to reveal its impact on TME and patients' response to immunotherapy across pan-cancer.@*METHODS@#The expression levels and mutational landscape of FARSB in pan-cancer were investigated. Kaplan-Meier and univariate Cox regression analyses were applied to analyze the prognostic significance of FARSB. Pathways affected by FARSB were investigated by gene set enrichment and variation analysis. The relationship between FARSB expression and immune infiltration was examined using the TIMER2 and R packages. Single-cell RNA sequencing (scRNA-seq) data of several cancer types from GSE72056, GSE131907, GSE132465, GSE125449 and PMID32561858 were analyzed to validate the impact of FARSB on the TME. The predictive effect of FARSB on immunotherapy efficacy was explored in 3 immune checkpoint inhibitors (ICIs)- treated cohorts (PMID32472114, GSE176307, and Riaz2017).@*RESULTS@#FARSB expression was significantly higher in 25 tumor tissues than in normal tissues and was associated with poor prognosis in almost all tumor types. FARSB expression exhibited a strong association with several DNA damage repair pathways and was significantly associated with TP53 mutation in lung adenocarcinoma (P < 0.0001, OR=2.25). FARSB characterized a typical immune desert TME and correlated with impaired expression of chemokines and chemokines receptors. Large-scale scRNA-seq analysis confirmed the immunosuppressive role of FARSB and revealed that FARSB potentially shapes the cold TME by impeding intercellular interactions. In 3 ICI-treated cohorts, FARSB demonstrated predictive value for immunotherapy.@*CONCLUSION@#This study provides a pan-cancer landscape of the FARSB gene by integrated single-cell and bulk DNA sequencing analysis and elucidates its biological function to promote DNA damage repair and construct the immune desert TME, suggesting the potential value of FARSB as a novel marker for stratifying patients with poor immunotherapeutic benefits and "cold" TME.


Subject(s)
Humans , Tumor Microenvironment , Prognosis , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Sequence Analysis, RNA
2.
Chinese Journal of Lung Cancer ; (12): 319-324, 2023.
Article in Chinese | WPRIM | ID: wpr-982162

ABSTRACT

Lung cancer is the most common in incidence and mortality worldwide. With the development of next generation sequencing (NGS) detection technology, more and more patients with rare anaplastic lymphoma kinase (ALK) fusion mutations were detected. A case of advanced lung adenocarcinoma with rare COX7A2L-ALK (C2:A20) fusion detected by NGS was reported in Peking Union Medical College Hospital, and all cases with rare ALK fusion mutations were searched from medical datebase from January 1, 2014 to March 31, 2021, to investigate the treatment of rare ALK fusion mutations with ALK inhibitors. The best response of the patient was assessed as partial response (PR) with Ceritinib treatment. By literature review, 22 cases of rare ALK fusion were reported in 19 articles. Combined with this case, 23 cases were analyzed. The objective response rate (ORR) was 82.6% (19/23) and disease control rate (DCR) was 95.7% (22/23) for rare ALK fusions patients treated with ALK inhibitors. Lung adenocarcinoma patients with rare ALK fusion could benefit from ALK inhibitors.
.


Subject(s)
Humans , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/diagnosis , Crizotinib , Adenocarcinoma of Lung/genetics , Protein Kinase Inhibitors/pharmacology , Oncogene Proteins, Fusion/genetics
3.
Chinese Journal of Lung Cancer ; (12): 156-166, 2022.
Article in Chinese | WPRIM | ID: wpr-928793

ABSTRACT

BACKGROUND@#Malignant pleural effusion is one of the common clinical manifestations of patients with lung adenocarcinoma. Patients with pleural effusion at the initial diagnosis of lung adenocarcinoma usually indicate poor prognosis. Epidermal growth factor receptor (EGFR) mutations mainly occur in patients with lung adenocarcinoma. Patients with different mutant subtypes have different prognosis. The clinical characteristics and prognostic factors of patients with EGFR mutated lung adenocarcinoma of different molecular subtypes combined with pleural effusion at initial diagnosis are still unclear. This study was designed to explore the clinical characteristics and prognostic factors of these patients in order to provide management recommendations for them.@*METHODS@#A retrospective analysis of the clinical characteristics, treatment, outcomes and progression-free survival (PFS) of first-line treatment in patients with EGFR mutated lung adenocarcinoma combined with pleural effusion at initial diagnosis admitted to Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital from January 2012 to June 2021 was performed. Pearson's chi-square test or Fisher's exact test were performed for comparison between groups. Kaplan-Meier method was performed for survival analysis and Cox proportional risk regression model was performed for multivariate analysis.@*RESULTS@#76 patients met the inclusion criteria in this study. The incidences of EGFR classical mutations 19del, 21L858R and non-classical mutations were 46.0%, 38.2% and 15.8%, respectively among these patients. There was no significant difference between the three mutations in terms of gender, age, presence of dyspnea at presentation, whether other distant metastases were combined, site of pleural effusion, volume of pleural effusion, presence of other combined effusions, tumor-node-metastasis (TNM) stage, presence of other gene mutations, and treatment of pleural effusion (P>0.05). In patients with EGFR classical mutations 19del or 21L858R or non-classical mutations subtype, the proportion of chemotherapy in first-line regimens were 17.1%, 20.7% and 58.3%, respectively (P=0.001); and first-line disease control rates were 94.3%, 75.9% and 50%, respectively (P=0.003); pleural effusion control rates were 94.3%, 79.3% and 66.7%, respectively (P=0.04); PFS were 287 d, 327 d and 55 d, respectively (P=0.001). Univariate analysis showed that EGFR mutation subtype, control of pleural effusion, first-line treatment agents, and first-line treatment efficacy were significantly associated with PFS (P<0.05). Cox multifactorial analysis showed that only EGFR mutation subtype and first-line treatment efficacy were independent prognostic factors for PFS (P<0.05).@*CONCLUSIONS@#PFS was significantly better for classical mutations than for non-classical mutations in patients with EGFR mutated lung adenocarcinoma combined with pleural effusion at initial diagnosis. Improving the efficacy of first-line therapy is the key to improve the prognosis of these patients.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , ErbB Receptors/genetics , Lung Neoplasms/pathology , Mutation , Pleural Effusion/complications , Prognosis , Retrospective Studies
4.
Chinese Journal of Lung Cancer ; (12): 147-155, 2022.
Article in Chinese | WPRIM | ID: wpr-928792

ABSTRACT

BACKGROUND@#At present, the research progress of targeted therapy for epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene mutations in lung adenocarcinoma is very rapid, which brings new hope for the treatment of advanced lung adenocarcinoma patients. However, the specific imaging and pathological features of EGFR and ALK gene mutations in adenocarcinoma are still controversial. This study will further explore the correlation between EGFR, ALK gene mutations and imaging and pathological features in invasive lung adenocarcinoma.@*METHODS@#A total of 525 patients with lung adenocarcinoma who underwent surgery in our center from January 2018 to December 2019 were included. According to the results of postoperative gene detection, the patients were divided into EGFR gene mutation group, ALK gene mutation group and wild group, and the EGFR gene mutation group was divided into exon 19 and exon 21 subtypes. The pathological features of the mutation group and wild group, such as histological subtype, lymph node metastasis, visceral pleural invasion (VPI) and imaging features such as tumor diameter, consolidation tumor ratio (CTR), lobulation sign, spiculation sign, pleural retraction sign, air bronchus sign and vacuole sign were analyzed by univariate analysis and multivariate Logistic regression analysis to explore whether the gene mutation group had specific manifestations.@*RESULTS@#EGFR gene mutation group was common in women (OR=2.041, P=0.001), with more pleural traction sign (OR=1.506, P=0.042), and had little correlation with lymph node metastasis and VPI (P>0.05). Among them, exon 21 subtype was more common in older (OR=1.022, P=0.036), women (OR=2.010, P=0.007), and was associated with larger tumor diameter (OR=1.360, P=0.039) and pleural traction sign (OR=1.754, P=0.029). Exon 19 subtype was common in women (OR=2.230, P=0.009), with a high proportion of solid components (OR=1.589, P=0.047) and more lobulation sign (OR=2.762, P=0.026). ALK gene mutations were likely to occur in younger patients (OR=2.950, P=0.045), with somking history (OR=1.070, P=0.002), and there were more micropapillary components (OR=4.184, P=0.019) and VPI (OR=2.986, P=0.034) in pathology.@*CONCLUSIONS@#The EGFR and ALK genes mutated adenocarcinomas have specific imaging and clinicopathological features, and the mutations in exon 19 or exon 21 subtype have different imaging features, which is of great significance in guiding the clinical diagnosis and treatment of pulmonary nodules.


Subject(s)
Aged , Female , Humans , Adenocarcinoma of Lung/genetics , Anaplastic Lymphoma Kinase/genetics , ErbB Receptors/genetics , Genes, erbB-1 , Lung Neoplasms/pathology , Mutation , Tomography, X-Ray Computed/methods
5.
Chinese Medical Sciences Journal ; (4): 31-43, 2022.
Article in English | WPRIM | ID: wpr-928248

ABSTRACT

Objective Many studies have revealed the crucial roles of miRNA in multiple human cancers, including lung adenocarcinoma (LUAD). In this study, we sought to explore new miRNA-mRNA pairs that are associated with LUAD prognosis. Methods A novel miRNA-mRNA regulatory network associated with prognosis in LUAD was identified and validated using the bioinformatic tools including OncomiR database, StarBase, miRnet, GEPIA2, UALCAN. Results Twenty key miRNAs were compiled after the analysis of the expression and prognostic value in OncomiR and StarBase. Targeted mRNAs of these key miRNAs were predicted in miRnet, and the resulting mRNAs were also analyzed for their prognostic values and expression patterns in GEPIA2 and UALCAN, respectively. Further expression correlation analysis was performed in StarBase. Subsequently, a new miRNA-mRNA network was built, of which each RNA pair showed negative expression correlation, opposite expression pattern, and prognostic value. Protein-protein interaction network was under construction for the mRNAs, and 19 hub genes were determined. Enrichment analysis showed that "Cell Cycle, Mitotic" was the most significantly enriched term. Then, a miRNA-hub gene sub-network was built. We selected and validated the regulatory relationship of some miRNA-hub pairs, including hsa-miR-1976/RFC2, hsa-let-7c-5p/RFC2, hsa-let-7c-5p/ESPL1, hsa-let-7c-5p/CDC25A, and hsa-miR-101-3p/KIF2C. Moreover, over-expression of hsa-miR-1976 and hsa-let-7c-5p resulted in significant cell cycle arrest. Conclusions Our results determined new prognosis-associated miRNA-mRNA pairs and might shed further light on the mechanism via which miRNA-mRNA network influences prognosis in LUAD.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , MicroRNAs/metabolism , Prognosis , RNA, Messenger/metabolism
6.
Clinics ; 76: e3222, 2021. tab, graf
Article in English | LILACS | ID: biblio-1350627

ABSTRACT

The current study found that high Zeste White 10 interactor (ZWINT) expression is related to the poor prognosis of patients with a variety of cancers. This study mainly explored the relationship between the expression level of ZWINT and the prognosis of patients with lung adenocarcinoma (LUAD). Briefly, four English databases and two high-throughput sequencing databases were searched and relevant data for meta-analysis were extracted. Pooled mean difference and 95% confidence interval (CI) were used to assess the relationships between clinical features and the expression of ZWINT. Pooled hazard ratio and 95% CI were also used to assess the relationships between clinical features and the expression level of ZWINT. This meta-analysis was registered in PROSPERO (CRD42021249475). A total of 16 high-quality datasets comprising 2,847 LUAD patients were included in this study. Higher ZWINT expression levels were found in patients younger than 65 years, males, and smokers, and were correlated with advanced TNM stages and poor prognosis. Notably, there was no publication bias in this meta-analysis. Overall, our findings indicate that ZWINT is a potential biomarker for poor prognosis and clinicopathological outcomes of patients with LUAD.


Subject(s)
Humans , Male , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Prognosis , Nuclear Proteins , Biomarkers, Tumor/analysis , Proportional Hazards Models , Intracellular Signaling Peptides and Proteins
7.
Braz. j. med. biol. res ; 54(5): e9700, 2021. tab, graf
Article in English | LILACS | ID: biblio-1180737

ABSTRACT

Lung adenocarcinomas are usually sensitive to radiation therapy, but some develop resistance. Radiation resistance can lead to poor patient prognosis. Studies have shown that lung adenocarcinoma cells (H1299 cells) can develop radioresistance through epithelial-mesenchymal transition (EMT), and this process is regulated by miRNAs. However, it is unclear which miRNAs are involved in the process of EMT. In our present study, we found that miR-183 expression was increased in a radioresistant lung adenocarcinoma cell line (H1299R cells). We then explored the regulatory mechanism of miR-183 and found that it may be involved in the regulation of zinc finger E-box-binding homeobox 1 (ZEB1) expression and mediate EMT in lung adenocarcinoma cells. qPCR results showed that miR-183, ZEB1, and vimentin were highly expressed in H1299R cells, whereas no difference was observed in E-cadherin expression. Western blot results showed that ZEB1 and vimentin were highly expressed in H1299R cells, while E-cadherin expression was decreased. When miR-183 expression was inhibited in H1299R cells, radiation resistance, proliferation, and cell migration were decreased. The expression of ZEB1 and vimentin in H1299R cells was decreased, while the expression of E-cadherin was increased. Moreover, miR-183 overexpression in H1299 cells enhanced radiation resistance, proliferative capacity, and cell migration ability. The expression of ZEB1 and vimentin in H1299 cells was increased, while that of E-cadherin was decreased. In conclusion, miR-183 may promote EMT and radioresistance in H1299 cells, and targeting the miR-183-ZEB1 signaling pathway may be a promising approach for lung cancer treatment.


Subject(s)
Humans , MicroRNAs/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Gene Expression Regulation, Neoplastic , Cell Movement , Cell Line, Tumor , Epithelial-Mesenchymal Transition
8.
Chinese Journal of Lung Cancer ; (12): 739-742, 2021.
Article in Chinese | WPRIM | ID: wpr-922241

ABSTRACT

45.7% of Chinese patients with advanced lung adenocarcinoma were reported to harbour sensitizing epidermal growth factor receptor (EGFR) mutations. Limited therapeutic options are left for non-small cell lung cancer (NSCLC) harbouring sensitizing EGFR mutations after failure of EGFR-tyrosine kinase inhibitor (TKI) therapy and chemotherapy, finding effective options for them is an unmet clinic need. Herein we reported a case that till January 12, 2021, an 82-year-old female with sensitizing EGFR-mutant advanced lung adenocarcinoma received a surprising progression-free survival (PFS) benefit of over 21 months from the combination therapy of pembrolizumab and anlotinib after her failure of treatments of osimertinib, chemotherapy and anlotinib-monotherapy.
.


Subject(s)
Aged, 80 and over , Female , Humans , Adenocarcinoma of Lung/genetics , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Indoles , Lung Neoplasms/genetics , Mutation , Quinolines
9.
China Journal of Chinese Materia Medica ; (24): 6261-6270, 2021.
Article in Chinese | WPRIM | ID: wpr-921784

ABSTRACT

To explore the mechanism of Hedyotis Diffusae Herba-Smilacis Glabrae Rhizoma(HDH-SGR) in treating lung adenocarcinoma based on big data bioinformatics combined with network pharmacology analysis and molecular docking technology. The chemical components and potential therapeutic targets of HDH-SGR were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). Lung adenocarcinoma-related genes were obtained from The Cancer Genome Atlas(TCGA), Therapeutic Target Database(TTD), Pharmacogenetics and Pharmacogenomics Knowledge Base(PharmGKB), Online Mendelian Inheritance in Man(OMIM), DrugBank, and GeneCards. "Drug component-target" network was constructed using Cytoscape to screen out key compounds. STRING was used to build protein-protein interaction(PPI) network and core targets were screened out by Cytoscape-CytoNCA topology analysis. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses of target genes were performed by R-clusterProfiler. Finally, key compounds were docked to core target genes using AutoDock. The results showed that 22 active compounds and 499 potential therapeutic targets were obtained from HDH-SGR. A total of 14 332 lung adenocarcinoma-related targets were screened out through six data platforms, including 182 common targets. Fifteen core targets were screened out from the PPI network. GO and KEGG analyses revealed significant enrichment of relevant target genes in various biological processes, cellular functions(e.g., response to lipopolysaccharide, nuclear receptor activity, and ligand-activated transcription factor activity) and close relationship between target genes and non-small cell lung cancer signaling pathways. Based on the results of molecular docking validation, diosgenin, quercetin, naringenin, taxifolin, 2-methoxy-3-methyl-9,10-anthraquinone, stigmasterol, and β-sitosterol were able to bind tightly to the core targets. HDH-SGR can intervene in lung adenocarcinoma through multiple targets and signaling pathways, such as non-small cell lung cancer signaling pathways. The binding of active components in Chinese medicine to key targets is presumedly one of the mechanisms that produce therapeutic effects.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Hedyotis , Lung Neoplasms/genetics , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology
10.
Chinese Medical Journal ; (24): 2619-2628, 2021.
Article in English | WPRIM | ID: wpr-921210

ABSTRACT

BACKGROUND@#Microribose nucleic acids (miRNAs) are implicated in the progression of lung adenocarcinoma. MicroRNA-345-5p (miR-345-5p) is a recently identified anti-oncogene in some human cancers, but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown. This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells.@*METHODS@#In this study, lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017. The expression of miR-345-5p and ras homolog family member A (RhoA) in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines (A549, H1650, PC-9, and H441) was detected by reverse transcription quantitative polymerase chain reaction analysis. Functional assays including colony formation, flow cytometry analysis, wound healing, and transwell assays were performed to assess the proliferation, apoptosis, migration, and invasion of lung adenocarcinoma cells. In addition, RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA. Difference between the two groups was analyzed with Student's t test, while that among multiple groups was analyzed with one-way analysis of variance.@*RESULTS@#MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues (0.241 ± 0.095 vs.1.000 ± 0.233, t = 19.247, P < 0.001) and cell lines (F = 56.992, P < 0.001) than control tissues and cells. Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation, migration, invasion, and facilitating cell apoptosis. Additionally, RhoA was verified to be the downstream target of miR-345-5p. Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9 (0.321 ± 0.047 vs. 1.000 ± 0.127, t = 8.536, P < 0.001) and H1650 (0.398 ± 0.054 vs. 1.000 ± 0.156, t = 4.429, P = 0.011) cells. Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation, migration, and invasion of lung adenocarcinoma cells. Further, miR-345-5p was found to regulate the Rho/Rho-associated protein kinase (ROCK) signaling pathway by downregulation of RhoA in lung adenocarcinoma cells.@*CONCLUSIONS@#MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , MicroRNAs/genetics , Up-Regulation/genetics , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/genetics
11.
Chinese Medical Journal ; (24): 2430-2437, 2021.
Article in English | WPRIM | ID: wpr-921177

ABSTRACT

BACKGROUND@#Circulating tumor DNA (ctDNA) is a promising biomarker for non-invasive epidermal growth factor receptor mutations (EGFRm) detection in lung cancer patients, but existing methods have limitations in sensitivity and availability. In this study, we used the ΔCt value (mutant cycle threshold [Ct] value-internal control Ct value) generated during the polymerase chain reaction (PCR) assay to convert super-amplification-refractory mutation system (superARMS) from a qualitative method to a semi-quantitative method named reformed-superARMS (R-superARMS), and evaluated its performance in detecting EGFRm in plasma ctDNA in patients with advanced lung adenocarcinoma.@*METHODS@#A total of 41 pairs of tissues and plasma samples were obtained from lung adenocarcinoma patients who had known EGFRm in tumor tissue and were previously untreated. EGFRm in ctDNA was identified by using superARMS. Through making use of ΔCt value generated during the detection process of superARMS, we indirectly transform this qualitative detection method into a semi-quantitative PCR detection method, named R-superARMS. Both qualitative and quantitative analyses of the data were performed. Kaplan-Meier analysis was performed to estimate the progression-free survival (PFS) and overall survival (OS). Fisher exact test was used for categorical variables.@*RESULTS@#The concordance rate of EGFRm in tumor tissues and matched plasma samples was 68.3% (28/41). At baseline, EGFRm-positive patients were divided into two groups according to the cut-off ΔCt value of EGFRm set at 8.11. A significant difference in the median OS (mOS) between the two groups was observed (EGFRm ΔCt ≤8.11 vs. >8.11: not reached vs. 11.0 months; log-rank P = 0.024). Patients were divided into mutation clearance (MC) group and mutation incomplete clearance (MIC) group according to whether the ΔCt value of EGFRm test turned negative after 1 month of treatment. We found that there was also a significant difference in mOS (not reached vs. 10.4 months; log-rank P = 0.021) between MC group and MIC group. Although there was no significant difference in PFS between the two groups, the two curves were separated and the PFS of MC group tended to be higher than the MIC group (not reached vs. 27.5 months; log-rank P = 0.088). Furthermore, EGFRm-positive patients were divided into two groups according to the cut-off of the changes in ΔCt value of EGFRm after 1 month of treatment, which was set at 4.89. A significant difference in the mOS between the two groups was observed (change value of ΔCt >4.89 vs. ≤4.89: not reached vs. 11.0 months; log-rank P = 0.014).@*CONCLUSIONS@#Detecting EGFRm in ctDNA using R-superARMS can identify patients who are more likely sensitive to targeted therapy, reflect the molecular load of patients, and predict the therapeutic efficacy and clinical outcomes of patients.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Circulating Tumor DNA/genetics , ErbB Receptors/genetics , Lung Neoplasms/genetics , Mutation/genetics , Protein Kinase Inhibitors
12.
Frontiers of Medicine ; (4): 275-291, 2021.
Article in English | WPRIM | ID: wpr-880954

ABSTRACT

Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER = 1.95, P = 0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide
13.
Journal of Peking University(Health Sciences) ; (6): 246-254, 2020.
Article in Chinese | WPRIM | ID: wpr-942169

ABSTRACT

OBJECTIVE@#To explore the valuable predictors for evaluating progression-free survival (PFS) in patients with lung adenocarcinoma, we analyzed the potential roles of standardized uptake value (SUV)-derived parameters from 18F-FDG PET/CT, combining with the gene mutation states of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK), and other clinical characteristics.@*METHODS@#Data of 84 lung adenocarcinoma patients pre-treated, who underwent 18F-FDG PET/CT scans, EGFR gene mutations test, ALK rearrangement assay and other relative tests, were retrospectively collected. Then a series of clinical parameters including EGFR/ALK mutation status and SUV-derived features [maximum standardized uptake value (SUVmax), average of standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] were evaluated. Best possible cutoff points for all measuring parameters were calculated using receiver operating characteristic curve (ROC) analysis. Survival analysis was performed using Cox proportional hazards model to determine the prognostic markers for progression-free survival (PFS). Survival curves were obtained through Log-rank test and Kaplan-Meier curve.@*RESULTS@#The median follow-up period was 31 months (24 to 58 months). It was found that SUVmax (≥3.01), SUVmean (≥2.25), MTV (≥25.41 cm3), and TLG (≥55.02) of the primary tumors were significantly associated with PFS in univariate Cox proportional hazards regression. Then regardless of age, gender, co-morbidity, EGFR/ALK mutation status, and treatment program, TLG (≥ 55.02, HR=4.965, 95%CI: 1.360-18.133), TNM stage (Ⅲ/Ⅳ, HR=7.811, 95%CI: 2.977-20.489), pro-gastrin releasing peptide (proGRP) (≥45.65 ng/L, HR=4.070, 95%CI: 1.442-11.487), tissue polypeptide antigen (TPA) (≥68.20 U/L, HR=6.996, 95%CI: 1.458-33.574), alkaline phosphatase (ALP) (≥82.50 IU/L, HR=4.160, 95%CI: 1.416-12.219) and ratio of activated partial thromboplastin time (aPTTR) (≥1.16: HR=4.58, 95%CI: 1.913-10.946) showed the independently relevant to PFS through multivariate Cox proportional hazards analysis. The EGFR mutant (P=0.343) and ALK rearrangement (P=0.608) were not significant either in survival analysis.@*CONCLUSION@#High SUV-derived parameters (SUVmax, SUVmean, MTV and TLG) might provide prognostic value to some extent. Especially, TLG, and other clinical features [TNM stage, proGRP, TPA, ALP, and aPTTR] could be independently and significantly associated with PFS of lung adenocarcinoma patients. However, EGFR/ALK gene status could not be effectively relevant to PFS in lung adenocarcinoma patients.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Anaplastic Lymphoma Kinase/genetics , ErbB Receptors/genetics , Fluorodeoxyglucose F18 , Genes, erbB-1 , Lung Neoplasms/genetics , Mutation , Positron Emission Tomography Computed Tomography , Prognosis , Radiopharmaceuticals , Retrospective Studies , Tumor Burden
15.
Chinese Medical Journal ; (24): 2403-2409, 2020.
Article in English | WPRIM | ID: wpr-877850

ABSTRACT

BACKGROUND@#Due to development of magnetic resonance-based functional imaging, it is easier to detect micro-structural alterations of tumor tissues. The aim of this study was to conduct a preliminary evaluation of the correlation of non-Gaussian diffusion kurtosis imaging (DKI) parameters with expression of molecular markers (epidermal growth factor receptor [EGFR]; anaplastic lymphoma kinase [ALK]; Ki-67 protein) in patients with advanced lung adenocarcinoma, using routine diffusion-weighted imaging as the reference standard.@*METHODS@#Data from patients with primary lung adenocarcinoma diagnosed at Cancer Hospital, Chinese Academy of Medical Sciences (CHCAMS) from 2016 to 2019 were collected for retrospective analysis. The pathologic and magnetic resonance imaging data of 96 patients who met the inclusion criteria were included in this study. Specifically, the Kapp and Dapp parameters measured from the DKI model; apparent diffusion coefficient (ADC) value from the diffusion-weighted imaging model; and the EGFR, ALK, and Ki-67 biomarkers detected by immunohistochemistry and/or molecular biology techniques after biopsy or surgery were evaluated. The relations between quantitative parameters (ADC, Kapp, Dapp) and pathologic outcomes (EGFR, ALK, and Ki-67 expression) were analyzed by Spearman correlation test.@*RESULTS@#Of the 96 lung adenocarcinoma lesions (from 96 patients), the number of EGFR- and ALK-positive and high Ki-67 expressing lesions were 53, 12, and 83, respectively. The Kapp values were significantly higher among patients with EGFR-positive mutations (0.81 ± 0.12 vs. 0.66 ± 0.10, t = 6.41, P < 0.001), ALK rearrangement-negative (0.76 ± 0.12 vs. 0.60 ± 0.15, t = 4.09, P < 0.001), and high Ki-67 proliferative index (PI) (0.76 ± 0.12 vs. 0.58 ± 0.13, t = 4.88, P < 0.001). The Dapp values were significantly lower among patients with high Ki-67 PI (3.19 ± 0.69 μm/ms vs. 4.20 ± 0.83 μm/ms, t = 4.80, P < 0.001) and EGFR-positive mutations (3.11 ± 0.73 μm/ms vs. 3.59 ± 0.77 μm/ms, t = 3.12, P = 0.002). The differences in mean Dapp (3.73 ± 1.26 μm/ms vs. 3.26 ± 0.68 μm/ms, t = 1.96, P = 0.053) or ADC values ([1.34 ± 0.81] × 10 mm/s vs. [1.33 ± 0.41] × 10 mm/s, t = 0.07, P = 0.941) between the groups with or without ALK rearrangements were not statistically significant. The ADC values were significantly lower among patients with EGFR-positive mutation ([1.19 ± 0.37] × 10 mm/s vs. [1.50 ± 0.53] × 10 mm/s, t = 3.38, P = 0.001) and high Ki-67 PI ([1.28 ± 0.39] × 10 mm/s vs. [1.67 ± 0.77] × 10 mm/s, t = 2.88, P = 0.005). Kapp was strongly positively correlated with EGFR mutations (r = 0.844, P = 0.008), strongly positively correlated with Ki-67 PI (r = 0.882, P = 0.001), and strongly negatively correlated with ALK rearrangements (r = -0.772, P = 0.001). Dapp was moderately correlated with EGFR mutations (r = -0.650, P = 0.024) or Ki-67 PI (r = -0.734, P = 0.012). ADC was moderately correlated with Ki-67 PI (r = -0.679, P = 0.033).@*CONCLUSIONS@#The Kapp value of DKI parameters was strongly correlated with different expression of EGFR, ALK, and Ki-67 in advanced lung adenocarcinoma. The results potentially indicate a surrogate measure of the status of different molecular markers assessed by non-invasive imaging tools.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Diffusion Magnetic Resonance Imaging , Lung Neoplasms/genetics , Reproducibility of Results , Retrospective Studies
16.
Chinese Medical Journal ; (24): 2532-2542, 2020.
Article in English | WPRIM | ID: wpr-877846

ABSTRACT

BACKGROUND@#Recent studies have demonstrated that microRNAs (miRNAs) in the blood circulation can serve as promising diagnostic markers for cancers. This four-stage study aimed at finding serum miRNAs as potential biomarkers for lung adenocarcinoma (LA) diagnosis.@*METHODS@#The study was carried out between 2016 and 2017. The Exiqon miRNA qPCR panel (3 LA vs. 1 normal control [NC] pooled serum samples) was used for initial screening to acquire miRNA profiles. Thirty-five dysregulated miRNAs were further evaluated in the training (24 LA vs. 24 NCs) and testing stages (110 LA vs. 110 NCs) using quantitative real-time polymerase chain reaction assays.@*RESULTS@#Four serum miRNAs (miR-133a-3p, miR-584-5p, miR-10b-5p, and miR-221-3p) were significantly overexpressed in LA patients compared with NCs. The diagnostic value of the four-miRNA panel was validated by an external cohort (36 LA vs. 36 NCs). The areas under the receiver operating characteristic curve of the four-miRNA panel in the training, testing, and external validation stages were 0.734, 0.803, and 0.894 respectively. Meanwhile, the expression level of miR-221-3p was much higher in LA tumor samples than that in the adjacent normal tissues (19 LA vs. 19 NCs). The expression level of miR-10b-5p was also elevated in the serum-derived exosomes samples (18 LA vs. 18 NCs). The expression of miR-133a-3p, miR-584-5p, and miR-10b-5p was significantly elevated in LA patients with epidermal growth factor receptor mutation compared with NCs.@*CONCLUSION@#The study established a four-miRNA signature in serum that could improve the diagnostic capability of LA.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Biomarkers , Biomarkers, Tumor/genetics , Gene Expression Profiling , Lung Neoplasms/genetics , MicroRNAs/genetics , ROC Curve
17.
Journal of Southern Medical University ; (12): 1422-1431, 2020.
Article in Chinese | WPRIM | ID: wpr-880765

ABSTRACT

OBJECTIVE@#To screen the key genes related to the prognosis of lung adenocarcinoma through big data analysis and explore their clinical value and potential mechanism.@*METHODS@#We analyzed GSE18842, GSE27262, and GSE33532 gene expression profile data obtained from the Gene Expression Omnibus (GEO). Bioinformatics methods were used to screen the differentially expressed genes in lung adenocarcinoma tissues and KEGG and GO enrichment analysis was performed, followed by PPI interaction network analysis, module analysis, differential expression analysis, and prognosis analysis. The expressions of MAD2L1 and TTK by immunohistochemistry were verified in 35 non-small cell lung cancer specimens and paired adjacent tissues.@*RESULTS@#We identified a total of 256 genes that showed significant differential expressions in lung adenocarcinoma, including 66 up-regulated and 190 down-regulated genes. Thirty-two up-regulated core genes were screened by functional analysis, and among them 29 were shown to significantly correlate with a poor prognosis of patients with lung adenocarcinoma. All the 29 genes were highly expressed in lung adenocarcinoma tissues compared with normal lung tissues and were mainly enriched in cell cycle pathways. Seven of these key genes were closely related to the spindle assembly checkpoint (SAC) complex and responsible for regulating cell behavior in G2/M phase. We selected SAC-related proteins TTK and MAD2L1 to test their expressions in clinical tumor samples, and detected their overexpression in lung adenocarcinoma tissues as compared with the adjacent tissues.@*CONCLUSIONS@#Seven SAC complex-related genes, including TTK and MAD2L1, are overexpressed in lung adenocarcinoma tissues with close correlation with the prognosis of the patients.


Subject(s)
Humans , Adenocarcinoma of Lung/genetics , Big Data , Cell Cycle Proteins/genetics , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , M Phase Cell Cycle Checkpoints , Mad2 Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics
18.
Biol. Res ; 52: 4, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011407

ABSTRACT

BACKGROUND: Hematoporphyrin derivative (HPD) has a sensibilization effect in lung adenocarcinoma. This study was conducted to identify the target genes of HPD in lung adenocarcinoma. METHODS: RNA sequencing was performed using the lung adenocarcinoma cell line A549 after no treatment or treatment with X-ray or X-ray + HPD. The differentially expressed genes (DEGs) were screened using Mfuzz package by noise-robust soft clustering analysis. Enrichment analysis was carried out using "BioCloud" online tool. Protein-protein interaction (PPI) network and module analyses were performed using Cytoscape software. Using WebGestalt tool and integrated transcription factor platform (ITFP), microRNA target and transcription factor (TF) target pairs were separately predicted. An integrated regulatory network was visualized with Cytoscape software. RESULTS: A total of 815 DEGs in the gene set G1 (continuously dysregulated genes along with changes in processing conditions [untreated-treated with X-ray-X-ray + treated with HPD]) and 464 DEGs in the gene set G2 (significantly dysregulated between X-ray + HPD-treated group and untreated/X-ray-treated group) were screened. The significant module identified from the PPI network for gene set G1 showed that ribosomal protein L3 (RPL3) gene could interact with heat shock protein 90 kDa alpha, class A member 1 (HSP90AA1). TFs AAA domain containing 2 (ATAD2) and protein inhibitor of activated STAT 1 (PIAS1) were separately predicted for the genes in gene set G1 and G2, respectively. In the integrated network for gene set G2, ubiquitin-specific peptidase 25 (USP25) was targeted by miR-200b, miR-200c, and miR-429. CONCLUSION: RPL3, HSP90AA1, ATAD2, and PIAS1 as well as USP25, which is targeted by miR-200b, miR-200c, and miR-429, may be the potential targets of HPD in lung adenocarcinoma.


Subject(s)
Humans , Hematoporphyrin Derivative/pharmacology , Gene Regulatory Networks/genetics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Ribosomal Proteins/drug effects , Ribosomal Proteins/genetics , Transcription Factors , Cluster Analysis , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA , HSP90 Heat-Shock Proteins/drug effects , HSP90 Heat-Shock Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/drug effects , Small Ubiquitin-Related Modifier Proteins/genetics , MicroRNAs/metabolism , Cell Line, Tumor , DNA-Binding Proteins/drug effects , DNA-Binding Proteins/genetics , Protein Inhibitors of Activated STAT/drug effects , Protein Inhibitors of Activated STAT/genetics , Flow Cytometry , ATPases Associated with Diverse Cellular Activities/drug effects , ATPases Associated with Diverse Cellular Activities/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL